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Zeros of orthogonal polynomials defined with respect to general measures are
studied. It is shown that a certain estimate for the minimal distance between zeros
holds if and only if the support F of the measure satisfies a homogeneity condition
and Markov's inequality holds on F. lid 1994 Academic Press, Inc.

INTRODUCTION

Let F be a compact subset of the m-dimensional Euclidean space IRm. We
say that F preserves Markov's inequality if there exist constants M and IX

such that

(1)

for all polynomials P in m variables of degree ~ n, n = 1, 2, 3, ..., where V
denotes the gradient and the norm is the maximum norm on F. For the back
ground to this concept, and its applications in approximation theory and in
the theory of function spaces, see [6] and the references given there. Exam
ples of sets preserving Markov's inequality are discussed in Section 2 below.

In [4] we pointed out a connection between sets preserving Markov's
inequality and a property of orthogonal polynomials defined with respect
to a measure f.1. with support F. Here we pursue this matter further by
showing that, in the one-dimensional case and in the presence of a certain
homogeneity condition, a set F preserves Markov's inequality if and only
if the distances between consecutive zeros of the associated orthogonal
polynomials satisfy a certain estimate. The results are given in Section 4
(Theorems I, 2, and 3).

As a preparation for the proof of these results, we investigate in Section I
an LP-version of Markov's inequality, and give in Section 3 a related division
inequality for polynomials.
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1. MARKOV'S INEQUALITY IN LP(J1.)

Throughout this section, F denotes a compact subset of IR m
. In the

sequel, we will assume that to F is associated a probability measure J1. with
support F satisfying, for some constants co> 0 and s> 0,

XEF, O<r~ I, (2)

where B(x, r) denotes the closed ball with center x and radius r; such a
measure with s = m exists on any compact set F, cf. [7]. Denote by II· lip
the norm in the Lebesgue space LP(J1.).

DEFINITION 1. Let 1~ P ~ 00. A set F preserves Markov's inequality in
LP( J1.) if there exist constants M> 0 and a> 0 such that

(3)

for all polynomials P in m variables of degree ~ n, n = 1, 2, 3, ....
Clearly, F preserves Markov's inequality (as defined in the previous

section) if and only if F preserves Markov's ineq uality in L GO (J1.). If (3) is
satisfied, we say that Fpreserves Markov's inequality in LP(J1.) with constants
M and IX and write FE vltP(M, IX).

The condition imposed on F by Definition 1 is independent of p, as
Proposition I below shows. The reason is that one can switch between
norms as explained by the following lemma.

LEMMA 1. Let I ~ p < 00.

(a) If FE vltOO(M, IX), then it holds that for all polynomials P of degree
~ n, n = 1, 2, 3, ... ,

l-vith a constant AI =A1(M, m, p, Co, s).

(b) If FE .ItP(N, /3), then it holds that for all polynomials P of degree
~ n, n = 1, 2, 3, ... ,

with a constant A 2 = A 2(N, m, p, Co, s).

Proof We first prove (a). Take xoEFwith IP(xo)1 = IIPllw, and let v be
a unit vector. Denote by D v the directional derivative, and let
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X E B(xo, l(Mn"». Then a repeated use of (1) gives, using multi-index
notation,

IDvP(x)1 = I L: DJ(Dv.~)(xo) (X-xo)JI
IJI";n-1 J.

(Mn")IJI + 1 IIPfl ex: , I
~ L: 'f (M')IJI = Mn IP(xo)\ L -:r

IJI";n-[ J. n LiI,,;n-1J·

~ Mn"emIP(xo)j·

Thus, by the mean value theorem, IP(x) - P(xo)1 ~ Memn" Ix - xo/IP(xo)l,
so if x E B(xo, b) where b = (2Memn")-I, we have IP(x) - P(xo)1 ~ IP(xo)I(2
and thus IP(x)1 ~ IP(xo)J(2. This gives IIPllp.1' ~ (JB(<o, b) jP(x)1 PdjJ,(x»lip ~

IP(xo)1 (jJ,(B(xo, b»)I/P(2 ~ IP(xo)1 clfP bslp(2, or, in view of our choice of
xo, IIPlloo ~2coI/P(2Mem)'lp n"·'lp IlPli p •

To prove (b), take again xoEFsuch that IP(xo)1= IIPlloo, and put
r = 1(Nn P). Then

jJ,(B(xo, r» IP(xo)1 =I IP(xo)! d{L(x)
Ix - xol ,,; r

f I (xo-x)J. I
= Ix-xol,,;r IJ~n )! DJP(x) d{L(x)

rlJI I
~ L -'r IDJp(x)1 djJ,(x)

IJI ,,; n J. Ix - xol ,,; r

~ IJ~n ~;I Gx-xol,,;r /DJP(xW df/(X») lip

x {L(B(xo, r»l-I/P.

Using (3) repeatedly we get

rlJl
{L(B(xo, r»I/P jP(xo)\ ~ L -., (NnP)IJI IIPll p

iii,,; n J.

1
= L -:r IIPll p ~ em 1IPIl p

IJI ,,;nJ·

and thus by (2)

IIPII ex: ~ Co l/p(NnPyIPemIIPII P'

Remark. To show that IDv'P(x)! ~ Mn"emIP(xo)1 in the proof of state
ment (a) above, one does not need that FE vl{oo(M, (X), but only the weaker
condition that IIDJ(DvP)IIex: ~ (Mn")IJI + I IIPII 00' iii ~ n - 1. This means
that the inequality II Plj 00 ~ A J n"'/p IIPll p holds under this weaker condition.
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We also note that in an analogous way as we obtained the estimate for
IDvP(x)l, one can get the following result (cf. [4, p. 310]). Let P be a poly
nomial of degree ~n, and denote by d(x, F) the distance from x to F.
Assume that IIDjPIIXl~(Mn~)ljIIIPllx, Ijl~n. Then IP(x)l~ebMmIIPllo)

for all x with d(x, F) ~ h/n~.

PROPOSITION 1. Let 1~ p < 00. Then F preserves Markov's inequality if
and only ifF preserves Markov's inequality in LP(p). More precisely we have

(a) If FE JIIX(M, ~), then FE JIIP(N, {3) with {3 = a(l + sip) and
N = N(M, m, p, Co, s).

(b) If FEJIIP(N,{3) then FE "ItXl(M, a) with ~={3(I+s/p) and
M = M(N, m, p, Co, s).

Proof The result follows immediately from the previous lemma. For
example, (b) follows from IIDvPl1 Xl ~ A 2(n -1 )fls/p IIDvPll p ~ A2nfis/PNnfJ IIPll p

~ A 2 Nn f3 (l +s/p) IIPII OC'

2. EXAMPLES IN THE ONE-DIMENSIONAL CASE

In this section we write, for short, FE JII if F preserves Markov's
inequality.

In general, it is a non-trivial problem to decide if a set is in JII or not.
In several variables, large classes of sets in JII are determined in [5]. In
this paper we are mostly interested in the one-dimensional case, whence we
discuss it in some detail.

Recall first that IIP'II eX, F ~ n2/r IIPII x,F if F is an interval of length 2r (the
norm is the maximum norm on F); this is the classical Markov inequality,
and it shows that a finite union of closed intervals is in vlt. We remark
that Tjebychev polynomials are optimal for this inequality, and that one
can easily use them to show that if FE v{{(M, ~), then a ~ 2. In [4] we
showed that certain Julia sets (these are sets of Cantorian type which
in general have Hausdorff dimension less than 1) are in JII, using the
theory of orthogonal polynomials on Julia sets. It has also been shown,
by A. Volberg, with a different method, that the Cantor ternary set is
in JII; for the proof of this result, see [1]. It is of interest for this paper to
recall that the Cantor ternary set has Hausdorff dimension s = log 2jlog 3,
and that a uniform measure supported on it satisfying (2) with this value
on s is often used. Since these last two examples are quite difficult to treat,
it is of some interest to point out how to obtain more elementary examples.
We show that certain "thick" Cantor sets, with positive Lebesgue measure,
are in JII; similar examples, using different methods, follow by results of
J. Siciak, cf. [1].
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We will use the Remez inequality. A somewhat weak form of it states
that if P is a polynomial of degree ::::; n and IPI ::::; 1 on a set E, where Eel,
1= [ - 1, 1], and m(l\E)::::; 2s, 0 < s::::; 1/2, then IPI ::::; e5n v'2s on I, see, e.g.,
[2]. If I is instead an arbitrary closed interval, the statement holds if one
replaces the condition m(l\E)::::; 2s by m(l\E)/m(l)::::; s; 0 < s::::; 1/2; this
follows by means of an affine change of variables.

Consider now the Cantor set F= n~~ 1 F y obtained as follows. Let a> 0,
put Fo = [0, 1], and let F" for v?, 1 consist of 2Y intervals of equal length
obtained by taking away from each interval in F v _ I an open interval
of length 3-(u+l)v. Then m(Fv ) = 1- 2:;-1 2 i - 1j3(U+ l)i = (3 u + 1 - 3 +
(2/3 u +

1 ),,)/(3 u + I _2) so, denoting by Iv anyone of the intervals in Fv,

(4)

where cl=(3u+I-3)/(3u+l-2); note also that m(F)=c 1 • Furthermore,
m (l,,\F) = L r-~ v + 1 2' - v - 1/3 (u + I J , = 11()la+ I ) v(3 U + 1 - 2)) so

m(l,,\F)

m(l,,)
(5 )

We now show that F preserves Markov's inequality. Assume that
1/ PI/x. F = 1 and that the degree of P is ::::; n. Let f3 > 0 and choose v so that
m(lv;d<IlnP::::;m(l.). Then, by (4), c l 2- v- 1 <1/nP and thus, by (5),
defining "I by 3u + 1 = 2;',

where the equality was obtained by choosing f3 = 2/("1 - 1) and the
constant C2 depends on a. Consequently, if n?, no, where no = no(a) is so
big that c2In~::::; 1/2, by Remez' inequality we have for x E Iv that
IP(x)1 ::::; e5nv/2C2!n2 = c3 · Since m(lv)?' Iln '!' Markov's inequality gives
1P'(x)1 ::::;2n211PI/ce,l)m(Iv)::::;2n2+Pc3=2c3n2+/J 11P11x.!' for xE/v and
thus for x E F. If n < no we use this inequality with n = no and get 1P'(x)1 ::::;
2c3n~ + fJn2+ P IIPII ceo F, x E F. Thus FE .JtX(M, Ct) with Ct = 2 + 2/("1 - 1) and
M = 2c3n~ + p. It is of some interest to recall that "I = (a + 1) In 3/1n 2 so
}' > In 3/1n 2, which gives an estimate for Ct independent of a; on the other
hand M tends to infinity if a tends to zero.

3. A DIVISION INEQUALITY FOR POLYNOMIALS

For a more elaborate version of the following inequality, in the case
when Fe IRm and Jl is the Lebesgue measure, see [3].
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PROPOSITION 2. Let 1~ p ~ 00, let Fe IR be a set preserving Markov's
inequality in LP(Il) with constants M and 0::, and let P be a polynomial of
degree n~l of the form P(x)=(x-XO)P1(x) where xoEIR. Then it holds
that

Proof We take 15 > 0, and introduce the notation

and

211fll = (J. . .. If IP dll ) liP.
1_\ -·\01 >0

Then

II P lll p~ tllPll1 + 211P I II·

If Ix -xol > 15, then IPI(x)1 = IP(x)I/lx - xol ~ IP(x)I/c:5 so

1
211P I II ~J IIPIl p'

(6)

(7)

Next, differentiating P(x)=(x-XO)PI(x) one obtains P'(x)=PI(x)+
(x-xo) P;(x). Thus

III P til = til P' - (x - xo) P; II ~ III P' II + III (x - xo) P; II

~ IIIP'II +b dlP;11 ~ IIP'llp+b IIP;lI p

~ Mn' IIPll p+ bM(n -I)' IIPlllp-

Together with (6) and (7) this gives

Now we choose b as 1/(2Mn') which gives

Remark. The constant in the division inequality can be somewhat
sharpened. For example, if p = 00 one obtains by means of replacing (6) by
IIPdloo~max(JiIPIII'211P111) the inequality IIPllloc~2Mn'IIPlioc' We also
remark that at least for p = (jJ the proposition admits a converse. Assume
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that IIPIII y, ~ Ln~ IIPIIXl for all P as in the proposition, let Q be a polyno
mial of degree n, and take xoEF. Then, with PI(x)=(Q(x)-Q(xo))/
(x - x o) we have IQ'(xo)1 = PI(Xo)~ Ln~ IIQ - Q(xo)1I oc ~ 2Ln~ IIQIIXl'

4. ZEROS OF ORTHOGONAL POLYNOMIALS

In this section, F denotes a compact subset of IR. As before, we assume
that a measure J1 with support F satisfying (2) is given. Denote by Pn ,

n = 0, 1,2, ..., orthogonal polynomials associated to J1 with the degree of
P n i= n. Normalization is of minor importance here, but we let them have
leading coefficient 1; then the minimum of IIPI12=(J IPI 2dJ1)1/2 over all
polynomials P of degree n with leading coefficient 1 is attained for P = Pn'
Recall that the zeros of Pn are simple and real and situated in the smallest
interval containing F. The theorems below explain a relation between
Markov's inequality in the form we study it here and the distance between
consecutive zeros of Pn'

THEOREM l. Assume that F preserves Markov's inequality in L 2( J1) with
constants M and iX, and let n ~ 2. Then there exists a constant M 1 > 0,
depending on M only, such that if Xi and Xi- 1 are consecutive zeros of Pn,
then

Proof We assume that [- I, I] is the smallest interval containing F
(the general case may be reduced to this by means of an affine change of
coordinates). Then Pn(x)=I17~1 (x-x;), where the zeros Xi of Pn satisfy
Ixil ~ l. We prove the theorem by means of a variation, showing that, for
some M I' if Ixi-Xi-II < M 1 /n 2

\ then there is a polynomial Q with leading
coefficient 1, Q i= Pn , with IlQII2 < IIPn I1 2, which is a contradiction.

Let Q(x)=Pn(x)(x-a)(x-b)/«x-xi_d(x-xi)), where a<xi_ 1 <
Xi < b. Then J~ Q(X)2 dJ1(x) ~ (b - a)4 J~ I Pn (X)2/«X - Xi _1)2 (x - xY)
dJ1(x). Using the division inequality in Proposition 2 twice, first with
PI(x)=Pn(x)/«x-xi_d(x-x;)) and XO=Xi and then with PI(x)=
Pn(x)/(x-xi~d and XO=X;_I' we get, putting L=6M, J~Q(xf

dJ1(x) ~ (b - a)4 L 2(n - 1f~ L 2nh IIPnll~ ~ L4(b - a)4 n4~ IIPnll~. Put now
X;-Xi_ 1=2E and take a=xi I-E and b=Xi+E. Then (x-a)(x-b)=
(X-Xi_ 1+E)(X-Xi-E) = (x-xi_d(x-X;)+E(X-X;-x+xi_d-E2 =
(x-xi_d(x-x;)-3E2, and thus Q(x)=Pn(x)(l-r(x)), where r(x)=
3E2/«X - Xi_ I)(X - x;)). Denoting [ -I, 1]\[a, b] by E, we have for x E E
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that 31:2 < (x - XI)(X - Xi _ d <4 so 31: 2/4 < r(x) < 1 or 0 < 1 - r(x) <
1- 31:2/4 and thus, since 8 ~ 1, (1- r(x»2 < 1- 382/2 + 91:4/16 ~ 1
151:2/16. Consequently,

L. Q(X)2 djJ.(x) =LPn (X)2 (1 - r(x»2 djJ.(x)

~ (1 - ~: 1:2)(I Pn(X)2 djJ.(x).

Together with the estimate for S: Q2 djJ. above this gives, since b - a = 41:,

II Q II ~ ~ ( (4I:L)4 n4, + 1 - ~: 1: 2
) II Pn II ~ djJ..

If (4I:L)4 n4, + 1 - (15/16) 1: 2 < 1, i.e., if I: < jl5/(43L 2n2
'), we have IIQII~ <

IIPnl1 ~ which is impossible. Thus we must have Ix , - X i - II = 21: ~
2 Jl5/(4 362 M 2

). (l/n 2
'), and the proof is finished.

Remark. If F= [ -1, 1], then we have, in view of the usual Markov's
inequality and part (a) of Proposition 1, that FE .,({2(M, 2(1 + s/2» =
J(2( M, 2 + s) so the theorem gives Ix i-X I _ II ~ M I /n 4 + 2\. If furthermore Jl
is the Lebesgue measure on [-1, 1], then it is known that FE .,({2(M, 2)
so the theorem gives the estimate lXi-xI-II ~ M 1 /n 4

• This is poor com
pared to the exact information available in this case, but it should be noted
that known, sharp, results concerning the distance between zeros deal with
measures which are special compared to the ones considered here.

To prove a converse of Theorem 1, we need to assume a certain
homogeneity condition. Let y ~ 1. We say that F satisfies the condition (Hy )

if there exists a d with 0 < d ~ I such that for any Xo E F and any r,
0< r ~ 1, there is a point x E F satisfying

In the proof of the next theorem the following lemma will be needed, cr.
[4, Theorem 1].

LEMMA 2. Assume that there are constants A and r > 0 such that
IIP"II W ~ Ak' IIPk I1 2 , k = 1, 2, .... Then FE "({W(A, r + 1/2).

Proof Let f\ denote the normalized polynomial f\ = Pk /IIPk I1 2 • Then,
by our assumption, IIP"IIXJ ~ Ak'.
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Let P be an nth degree polynomial. It may be written, with sums from
k=O to k=n, P='LaJ\, where (2:. lakI 2)1/2= 1!P1I2' Thus, for XEF we
have

which gives the lemma.
We also note that if I is an interval of length I, a repeated use of

Markov's inequality lip/II 00. I:::;; 2n2j/liPII 00,/ gives, for an nth degree poly
nomial P,

Iii :::;;n. (8)

THEOREM 2. Let y~ 1, assume that F satisfzes (Hy ), and that for consecutive
zeros Xi-l and Xi of Pn holds, for some M, IX> 0, and for n ~ 2,

(9)

Then F preserves Markov's inequality.

Proof We assume in the proof that the polynomials Pn are normalized
so that IIPnll oc =1. Take n~2, and let E={x;IPn(x)l:::;;l}; then FeE.
The set E consists of at most n disjoint, closed intervals, since Pn has n real
zeros, and we denote by I; the interval which contains X; (possibly some
I/s are identical).

Assume that I; n F is not empty, I(I;) < dMYjn(" + 2IY, and take Z E I; n F.
By the condition (Hy ) (we assume M:::;; 1), there is a point y E F with
dMYjn(a+2)Y:::;;lz_yl:::;;Mjna+2. Since y cannot be in I;, and since
Iy - x;1 :::;; jy - zl + Iz - x;1 :::;; Mjna+ 2 + dMYjn(a+ 2) Y:::;; Mj(2n"), it has to be
in Ii_lor 1;+1> say in I;~l' Then we have 1(I;-d~lxi-l-yl~

IX i - 1 - Xii-Ix; - yl ~ Mjn'" - Mj(2n") = Mj(2n"'). Thus, by (8), we have
Ilp~j)lIoc'/i_l:::;;(4na+2jM)ljl II P nlloo'/i-l for U/ :::;;n, so by the remark given
after the proof of Lemma 1 we have IPn(x)1 :::;; e4 IIPnl1 00, 1;-1 if d(x, 1;_ d:::;;
Mjna+2. Since YEIi_ 1 , and Iy-zl :::;;Mjna+2, it follows that IPn(x)1 :::;;e4

for XE [Xi-I, z], and thus for XE [Xi-I, z] U 1;= [Xi-I, xJ u I;. In case
1(I;)~dMYjn(a+2)Y we use that IPnl:::;; 1 on I;, and thus we see that in any
case there is an interval Ji containing I; such that I(J;) ~ dMYjn(a+ 2)y and
IPnl :::;; e4 on J;. This holds also for n = 1 since the diameter of F is ~d due
to our assumption, and thus ~ dM assuming M:::;; 1.

640/78/1·7
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Thus, by (8) we have

Ilp~j)11 00, Ii ~ IIP~)II oo,Ji ~ (2n(H Z) Y+ Z/dMY)1J1 IIPnll 00, Ji' Iii ~n,

and, consequently, since IIPnIl00,Ji~e4=e41IPnII00~e41J'llPnII00 for Iii ~ 1
and FeE, Ilp~j)lIoo~«2e4/dMY)n(HZ)y+z)'j'IIPnlloo'By Lemma 1, and
the remark given after its proof, we get

so IIP~lIoo~A4(d,M,y,co,s)n((H2)Y+2)(I+s/2)IlPnIl2 and it follows from
Lemma 2 that f E .A(A 4 , (2 + (a + 2)y)( 1 + s/2) + 1/2).

THEOREM 3. Assume that F preserves Markov's inequality with constants
M and a. Then satisfies (Hy) for y > 2a.

Proof We may assume that F is contained in an interval of length 1.
Recall from Section 2 that a satisfies a ~ 2, so y > 2a implies y > 1.
Take y> 1, and assume that F does not satisfy (Hy ). Then one can find
arbitrary small numbers r and points Xo E F, depending on r, such that
[xo - r, Xo + r ]\(xo - rY, Xo + rY) contains no points from F. (Otherwise
there would exist an ro~ 1 such that for every r ~ ro and XoE F, there is a
point x E F with rY~ Ix - xol ~ r. But then, if 1~ r ~ roand XoE F, there is
an x E F with r ~ ro~ Ix - xol ~ r& ~ r&rY, which means that F satifies (Hy)
with d= r&.) Take fJ with 1 < fJ < y. Corresponding to numbers Xo and r as
above, we construct polynomials Q of degree n = nCr), with nCr) -+ 00 as
r -+ 0, such that (the norm is the maximum norm on F)

II Q/ II 00 ~ cn)'/(ZPJ II Q II 00' (10)

This means that we have a ~ y/(2fJ) or y ~ 2afJ, and since fJ can be taken
arbitrary close to 1, we must have y ~ 2a. Thus F satifies (Hy) for y > 2a.

Assume first that Xo= O. Define P by P(x) = x(1 - XZ)k. Then P'(x) =
(l-xZ-2kxZ)(I-xz)k-t, so P'(O) = 1 and ±1/J2k+ 1 are the zeros of
P'in (-1, 1). Take now k as the integer part of r- zP/2; then I/J2k + 2 <
rP~ 1/.j2k, and it is not hard to see that, if r is small enough, the points

± 1/,j2k+T lie in [-r, r]\( -rY, rY), Thus, since Fe [-1,1], the maxi
mum of IP(x)1 on F is less than or equal to the bigger of the numbers P(r)
and P(rY ).

Clearly, P(rY)=rY(l-rzY)k~rY. Since k>r- zP/2-1 we have, assuming
r~I/2 and noting that (l-s)l/s~e--1 if O<s<l, P(r)=r(l-rZ)k ~

3 Z -2P/Z / Z -ll(l-Pl/Z 3 ,.l(I-Pl/Z h h(4/ ) r( 1 - r r = (4 3) r( 1 - r r r ~ (4/ ) re - . ~ rY, were t e
last inequality holds if r is small enough, since f3 > 1.
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Thus if r is small enough we have, denoting by n the degree of P so
n = 2k + 1, P'(O) = 1 = r-YrY~ r- Y IIPII 00 = (r- f3 F!f3 IIPII 00 ~ (J2kF!f3 IIPII 00

~ (/2) ny!(2f3) IIPII 00' Take now Q(x) = P(x - xo); then (10) is satisfied for
small r, and the theorem is proved.

Note that the theorems above give the following characterization.

COROLLARY 1. A set F preserves Markov's inequality if and only if there
are constants y~ 1, L > 0, and P> 0, such that F satifies (Hy ) and such that
if Xi and Xi-I are consecutive zeros of Pn , then it holds for n ~ 2 that
Ix i - Xj~ II ~ Lln f3.
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